Rat cerebellar granule cells are protected from glutamate-induced excitotoxicity by S-nitrosoglutathione but not glutathione.
نویسندگان
چکیده
In cultured rat cerebellar granule cells, glutamate or N-methyl-d-aspartate (NMDA) activation of the NMDA receptor caused a sustained increase in cytosolic Ca(2+) levels ([Ca(2+)](i)), reactive oxygen species (ROS) generation, and cell death (respective EC(50) values for glutamate were 12, 30, and 38 microM) but no increase in caspase-3 activity. Removal of extracellular Ca(2+) blocked all three glutamate-induced effects, whereas pretreatment with an ROS scavenger inhibited glutamate-induced cell death but had no effect on the [Ca(2+)](i) increase. This indicates that glutamate-induced cell death is attributable to [Ca(2+)](i) increase and ROS generation, and the [Ca(2+)](i) increase precedes ROS generation. Apoptotic cell death was not seen until 24 h after exposure of cells to glutamate. S-nitrosoglutathione abolished glutamate-induced ROS generation and cell death, and only a transient [Ca(2+)](i) increase was seen; similar results were observed with another nitric oxide (NO) donor, S-nitroso-N-acetylpenicillamine, but not with glutathione, which suggests that the effects were caused by NO. The transient [Ca(2+)](i) increase and the abolishment of ROS generation induced by glutamate and S-nitrosoglutathione were still seen in the presence of an ROS scavenger. Glial cells, which were present in the cultures used, showed no [Ca(2+)](i) increase in the presence of glutamate, and glutamate-induced granule cell death was independent of the percentage of glial cells. In conclusion, NO donors protect cultured cerebellar granule cells from glutamate-induced cell death, which is mediated by ROS generated by a sustained [Ca(2+)](i) increase, and glial cells provide negligible protection against glutamate-induced excitotoxicity.
منابع مشابه
Neuroprotective Effect of Total and Sequential Extract of Scrophularia striata Boiss. in Rat Cerebellar Granule Neurons Following Glutamate- Induced Neurotoxicity: An In-vitro Study
Neuroprotective effect of the extract from aerial parts of Scrophularia striata Boiss(Scrophulariaceae) was investigated against glutamate-induced neurotoxicity on cultured rat pupsCerebellar Granule Neurons (CGNs). CGNs from 8 days old Sprague-Dawley rat were preparedand cultured. The experiments were performed after 8 days in culture. The plant was collected fromthe northeastern part (Ruin re...
متن کاملNeuroprotective Effect of Total and Sequential Extract of Scrophularia striata Boiss. in Rat Cerebellar Granule Neurons Following Glutamate- Induced Neurotoxicity: An In-vitro Study
Neuroprotective effect of the extract from aerial parts of Scrophularia striata Boiss(Scrophulariaceae) was investigated against glutamate-induced neurotoxicity on cultured rat pupsCerebellar Granule Neurons (CGNs). CGNs from 8 days old Sprague-Dawley rat were preparedand cultured. The experiments were performed after 8 days in culture. The plant was collected fromthe northeastern part (Ruin re...
متن کاملThe endoplasmic reticulum-related events in S-nitrosoglutathione-induced neurotoxicity in cerebellar granule cells.
Nitric oxide (NO)-induced neurotoxicities are involved in the pathogenesis of several neurodegenerative disorders featured by misfolded proteins. However, the details remain to be investigated. In the present work, we focus on the study of some endoplasmic reticulum-related events in S-nitrosoglutathione (GSNO)-induced neurotoxicity in cerebellar granule cells (CGCs) and we demonstrated that: (...
متن کاملDNA strand breaks induced by sustained glutamate excitotoxicity in primary neuronal cultures.
We developed a new approach to study single- and double-stranded DNA breaks during chronic, moderate excitotoxicity resulting from the inhibition of the glutamate transporter in cerebellar granule cell primary cultures. A 24 hr treatment of 2-week-old cultures with L-alpha-amino adipate (LAA), an inhibitor of the cerebellar glutamate uptake transporter, caused a gradual extracellular accumulati...
متن کاملGrowth factors and taurine protect against excitotoxicity by stabilizing calcium homeostasis and energy metabolism.
Taurine, brain derived neurotrophic factor (BDNF), and basic fibroblast growth factor (bFGF) are known to control the development of early postnatal cerebellar granule cells. This study attempted to investigate possible mechanisms of this control by determining neuronal survival, calcium homeostasis, and related calcium-mediated functions, as well as the site of action during glutamate-induced ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 286 4 شماره
صفحات -
تاریخ انتشار 2004